- Linear independence of functions
 - Two functions y_1 and y_2 are defined as **linearly independent** if y_1 and y_2 are not linear multiples of each other i.e. there exist no constants c_1 and c_2 such that $c_1y_1 = c_2y_2$ given that $(c_1, c_2) \in \{\mathbb{R}^2 | (c_1, c_2) \neq (0, 0)\}$.
 - A set of functions $S = \{y_1, y_2, ..., y_n\}$ is **linearly independent** if for any subset $\{f, g\} \subseteq S$, *f* and *g* are linearly independent.
- **Superposition Principle**: Given a linear homogeneous differential equation, any **linear combination** of solutions is also a solution to the differential equation.
 - Example: second-order. Let y_1 and y_2 be solutions to a linear homogeneous second-order differential equation y''+P(x)y'+Q(x)y=0. Then $y = c_1y_1 + c_2y_2$ (a linear combination of the solutions) is a solution to the differential equation.
 - In other words: Suppose that $y_1, y_2, ..., y_n$ are all solutions of a linear homogeneous differential equation. Then, $y = c_1y_1 + c_2y_2 + ... + c_ny_n$ is a solution.
 - Why is the superposition principle useful? To find general solutions of linear homogeneous ordinary differential equations.
- Wronskian Determinant. Suppose there is a set of *n* functions $\{y_1, y_2, ..., y_n\}$, each of which are n-1 times differentiable on some interval $I \subseteq \mathbb{R}$. The Wronskian Determinant

of the functions in this set is:
$$W(y_1, y_2, ..., y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

- If $W(x_o) \neq 0$ for some $x_o \in I$, then $\{y_1, y_2, ..., y_n\}$ is linearly independent on *I*.
- If $\{y_1, y_2, ..., y_n\}$ is linearly dependent on *I*, then W(x) = 0 for all $x \in I$.
- Wronskian Determinant of a second-order linear homogeneous ODE.
 - Let the general solution of the differential equation be $y = c_1 y_1 + c_2 y_2$.

$$\circ \quad W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

- An IVP is solvable if $W \neq 0$.
- If y_1 and y_2 are solutions to the differential equation, then either $W(y_1, y_2) = 0$ for all x, or $W(y_1, y_2) \neq 0$ for any x.
- How do we know that an IVP is solvable?
 - An IVP given initial conditions around x_o is solvable if $W(x_o) \neq 0$